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Abstract. We present a density-functional study of electronic structures of convex-caged Si clusters doped
with transition-metal (TM) atoms. First, we show the reason for their peculiar geometries in terms of
interplay among the electron orbitals of Si and TM atoms. Then we describe the potential ability of the
clusters to serve as charge sources to other objects such as Si crystal surfaces.

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals –
36.40.Cg Electronic and magnetic properties of clusters

1 Introduction

Modern electronic device technology has been ready for
mass production of silicon (Si)-based metal-oxide-semi-
conductor (MOS) field-effect transistors (FET’s) with
physical gate lengths being only 50 nanometers [1]. Fur-
ther miniaturization of devices would continue and require
more sophisticated technologies to accurately process ma-
terials in several nanometers or even smaller length scales.
Constructing silicon (Si) clusters that contain roughly
10–1000 atoms may be one of very important subjects
to fertilize useful techniques for that purpose. In order
to maximize the controllability of the clusters, it is es-
sential that they have simple and well-defined structures.
However, the energetically favorable structures of pure Sin
(n up to ∼20) clusters are rather complicated [2]. It is also
hard to understand intuitively the reason for the stability
of their structures, too.

Inspired by the work by Beck [3], we have so far clar-
ified in previous studies that silicon clusters may have
hollow cage structures if certain transition-metal atoms
are incorporated in the clusters [4–6] and also that those
cages have well-defined topologies modeled as convex sim-
ple 3-polytopes, the numbers of whose inner diagonals
passing close to the metal atoms are maximized [7,8].

There have been some theoretical studies of metal-
atom encapsulated Si and Ge clusters [9–14]. In most of
them, however, sufficient care has not been paid to search-
ing for lowest-possible energy structures of the clusters.
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Instead, the authors of those studies have just presented
results of local optimizations in the vicinity of a few initial
structures they assumed. They have not given substantial
explanations for why the cluster structures they have ob-
tained are energetically favorable. In contrast, we have at-
tempted a serious search for the global-energy-minimum
structures of WSin clusters in recent studies [7,8].

The purpose of this presentation is twofold. First, we
describe the electronic structures of WSi12 and WSi14
clusters obtained previously [7,8] to demonstrate how it is
much easier to understand the atomic structures of these
clusters than pure silicon clusters. Second, we present
chemical potentials and hardnesses of some TM-atom-
doped Si clusters, MSin, (M = W, Re, Ta, Nb, n = 12, 14
and 16). Based on the latter result, we will argue the abil-
ity of the Si clusters with TM atoms behaving as charge
sources to other macroscopic bodies such as semiconduc-
tor surfaces.

2 Method of calculation

We have defined a two-step strategy to obtain low-energy
structures of WSin clusters. In the first step, we have per-
formed genetic-like structure updates of the clusters. This
corresponds to a global search of potential energy min-
ima. As for the genetic-like operations, we have adopted
the single-parent evolution algorithm (SPEA [15]). In this
step, each cluster may experience several energy minima,
finally approaching the lowest-possible-energy minimum
given by each SPEA run. In the second, a local optimiza-
tion around the selected minimum has been done by using
a quenched molecular dynamics method. In both steps,
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Fig. 1. (Color) Lowest-energy structures of (a) WSi10,
(b) WSi12 and (c) WSi14 clusters found in our calculation.
Pale grey (green) and dark grey (red) balls represent Si and
W atoms, respectively. The line segments connecting any pair
of atoms are drawn when the inter-atom distance is less than
2.7 Å. In panel (c), the six Si atoms of the cluster are labeled
as Ai (1 ≤ i ≤ 6).

estimation of the total energy has been performed with
density-functional theory within the generalized gradient
approximation. In principle, one wish to use simple ana-
lytical potential functions or tight-binding parameters for
the total energies calculated in step (1) to find as many
local minima as possible. However, we do not know any
such formulas whose accuracy to describe the interactions
between Si and W atoms has been established. This is why
we had to use density-functional theory in step (1) as well
as (2), limiting the number of sampled potential-energy
surfaces in step (1). Thus we do not insist at present that
the lowest-energy structures of WSin clusters that we show
are of real global energy minima [16].

For evaluation of chemical potential and chemical
hardness, we have performed local optimization of the
structures of MSin, MSi+n and MSi−n clusters, each start-
ing from the counterpart of WSin.

3 Results

3.1 Atomic structures

First we review the geometry of the WSin clusters. Fig-
ure 1 shows optimized structures of WSi10, WSi12 and
WSi14 clusters whose respective energies are found to be
lowest in our calculation. As already pointed out [7,8],
well-defined cages occur for a certain range of the number
of Si atoms, 12 (Fig. 1b) and 14 (Fig. 1c). The topology of
these cages are identified to be that of the convex simple
3-polytope where the number of inner diagonals [17] close
to the W atom is maximized. Our structure of WSi14 is dif-
ferent from that reported by Kumar and Kawazoe [14,18].
The structure of the WSi10 cluster (Fig. 1a) is not a cage
of the same kind as WSi12 and WSi14 clusters, although
the ten Si atoms do surround the W atom.

We have reported previously [7,8] that the arrange-
ment of Si atoms in the WSi16 cluster does not have a
cage of convex simple 3-polytope but appears to be either
the cage of WSi12 (Fig. 1b) or WSi14 (Fig. 1c) where ei-
ther four or two Si atoms are attached, respectively. The
structures have been obtained by local optimizations for
the initial cage structures configured in the 16-vertex con-
vex simple 3-polytopes. Based on this result, we have con-

Fig. 2. (Color) (a) A structure of the WSi16 cluster recently
found in our calculation. The conventions are the same as those
in Figure 1. It should be noted that the distances from W and
all Si atoms are larger than 2.7 Å. Schlegel diagrams of the Si
cage structures of WSi16 (panel (a)) and WSi14 (Fig. 1c) are
shown in panels (b) and (c), respectively. See also Figure 4 of
reference [17].

cluded that there should be a finite range of the cluster
size for which convex Si cages are favored.

Very recently, we have found using our full SPEA-
based structure optimization that the WSi16 cluster may
also have a hollow cage structure that may be modelled
as the 16-vertex convex simple 3-polytope with the maxi-
mum number of the inner diagonals (Fig. 2a). This is the
same as that reported by Kumar and Kawazoe [14]. How-
ever, the actual cage shape is not convex, suggesting that
formation of a convex Si cage is not energetically favor-
able for n = 16. In addition, the structure of the obtained
WSi16 cluster in Figure 2a can be configured by attaching
two additional Si atoms to the cage of the WSi14 (Fig. 1c).
This result originates from the fact that the topology of
the cage in Figure 2a is closely related to that of Fig-
ure 1c so that one of Si “dimers” (atom pair A1 and A2,
for example; see Figs. 1c and 2c) is just replaced by a
“tetramer” (B1, B2, B3 and B4, see Fig. 2b). Further, the
distances between the W atom and Si atoms are all longer
than 2.7 Å at variance with WSi12 and WSi14, suggest-
ing that the W-Si-cage bonding is weaker than that in
the WSi12 and WSi14 clusters. All these features of the
result shown in Figure 2 imply that the cage with sixteen
Si atoms in a convex simple 3-polytope is too large and
unfavorable to form to surround a W atom, supporting
the existence of the “magic number” for n of WSin as
described in the above paragraph.

In order to understand the peculiar geometries of
WSi12 (Fig. 1b) and WSi14 (Fig. 1c), it is useful to illus-
trate wavefunctions contributing to W-Si bonds. In the
case of WSi12 (Fig. 3), there are twelve molecular or-
bitals bridging the W- and Si-atom sites. These orbitals
are mainly composed of W d orbitals with a small amount
of s counterpart and s- or p-dominant orbitals at each
Si atom. As is obvious in Figure 3, symmetry of the
W d orbitals is very favorable for the Si cage in a reg-
ular hexagonal prism structure. As for WSi14 (Fig. 1c),
there are fifteen molecular orbitals (not shown in this pa-
per) with similar characters to those shown in Figure 3
for WSi12. These results justify to approximate the W-Si
bonds with inner diagonals of each Si cage passing close
to the W atom, establishing a clear identification of the
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Fig. 3. (Color) Wavefunctions contributing to the W-Si-cage bonds of the WSi12 cluster. Grey (red) and black (blue) lobes
illustrate wavefunctions with opposite phases. Distribution of the eigenvalues is also shown. The positions of grey (red) and
black (blue) bars correspond to occupied and unoccupied eigenstates, respectively. The length of each bar represents degeneracy
of the eigenstate (single or doubly degenerate).

essence of the Si cage structures in WSi12 and WSi14, the
magic-number clusters of WSin, in terms of topology [7,8].

3.2 Chemical potential and chemical hardness

For estimation of the potential ability of TM-atom doped
Si clusters as charge sources to other macroscopic bodies,
it may be a first-step study to calculate their IP’s (I) and
EA’s (A). In practice, we discuss their chemical poten-
tials (µ) and chemical hardnesses (η) instead [19]. Let us
denote the total energy of an N -electron system as E(N).
Then, for ∆N � N , we have

E(N +∆N) � E(N)+
dE

dx

∣
∣
∣
∣
x=N

∆N +
1
2

d2E

dx2

∣
∣
∣
∣
x=N

(∆N)2.

(1)
The µ and η are defined as

µ ≡ dE

dx

∣
∣
∣
∣
x=N

(2)

and

η ≡ 1
2

d2E

dx2

∣
∣
∣
∣
x=N

=
1
2

dµ

dx

∣
∣
∣
∣
x=N

· (3)

Since I ≡ E(N − 1) − E(N) and A ≡ E(N) − E(N + 1),
and setting ∆N = 1, µ and η are related to I and A via

µ = −I + A

2
(4)

and
η =

I − A

2
· (5)

Consider two systems with µi and ηi (i = 1, 2) contacting
each other, where some amount of electron charges (∆M)

transfers from one to another. Let us determine ∆M and
the resultant energy change (∆E) due to the charge trans-
fer [20]. The total energies after charge transfer are

E1(N1 + ∆M) � E1(N1) + µ1∆M + η1(∆M)2 (6)

and

E2(N2 − ∆M) � E2(N2) − µ2∆M + η2(∆M)2. (7)

Correspondingly, chemical potentials become

µ′
1 =

dE1(x + ∆M)
dx
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� µ1 + 2η1∆M (8)

and

µ′
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∣
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� µ2 − 2η2∆M, (9)

to first order in ∆M after the charge transfer. Establish-
ment of chemical equilibrium after charge transfer requires
µ′

1 = µ′
2, from which we find

∆M � µ2 − µ1

2(η1 + η2)
, (10)

∆E � − (µ1 − µ2)2

4(η1 + η2)
· (11)

Note that, in equation (11), ∆E is the energy gain of
the total system (1+2) due solely to the alignment of
the chemical potentials of the two systems at the same
value. There may be an additional energy gain provided by
Coulomb attraction between the two, if the initial states
of the both were charge neutral. It is evident from equa-
tions (10, 11) that a guiding principle to predict the oc-
currence of an easier charge transfer is a large difference
in µ together with low η1 and η2.
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Table 1. Preliminary results for the electronic properties of
TM-atom encapsulated Si clusters. I , A, µ and η denote ioniza-
tion potential, electron affinity, chemical potential and chemi-
cal hardness, respectively. For the relationship between (I, A)
and (µ, η), see equations (4, 5) in the text.

Cluster I (eV) A (eV) µ (eV) η (eV) µ/η

NbSi12 7.544 3.955 –5.750 1.795 –3.104
NbSi14 7.272 3.785 –5.528 1.744 –3.170
NbSi16 6.066 3.237 –4.651 1.415 –3.287

TaSi12 7.632 4.060 –5.846 1.786 –3.273
TaSi14 7.257 3.756 –5.507 1.751 –3.145
TaSi16 7.014 3.663 –5.338 1.676 –3.185

WSi12 7.586 2.965 –5.275 2.311 –2.283
WSi14 7.100 3.027 –5.064 2.037 –2.486
WSi16 6.922 2.890 –4.906 2.106 –2.330

ReSi12 7.395 2.362 –4.878 2.517 –1.938
ReSi16 6.212 2.900 –4.556 1.656 –2.751

Keeping the preliminaries above in mind, we have
calculated chemical potentials (µ) and chemical hard-
nesses (η) for some metal-encapsulated Si clusters
(Tab. 1). For this purpose, we have performed local opti-
mization of the structures of a neutral cluster and ions
with ±1 charge for each MSin, starting from the op-
timized structure of neutral WSin. We have run the
Gaussian98 [22] code to do this job, where the effective
core potentials [23] were used to model the Coulomb in-
teractions between the valence electrons and the atomic
cores, and the Becke’88 [24] and Perdew-Wang’91 [25]
functionals were adopted for exchange and correlation en-
ergies, respectively. Evaluating the µ/η ratio to search for
a cluster with a high ability to accept an electron with a
low chemical hardness, we find TaSi12 and NbSi16 clusters
to have the large |µ/η| ratios. The TaSi12 cluster meets
these two conditions, whose electron affinity (4.060 eV)
is outstandingly high. Considering also the low chemi-
cal hardness (see Eqs. (10, 11)), one can expect that the
TaSi12 cluster may serve as a charge-transfer-type accep-
tor to other substances, such as Si crystals. More detailed
assessment of the ability of the charge transfer doping with
TM-atom encapsulating Si clusters is now underway. The
high potential ability of this cluster to be an acceptor is
greatly suppressed by attaching one more Si atom to gen-
erate a TaSi13 cluster. This result means that the elec-
tronic properties of TM-atom-doped Si cage clusters are
rather sensitive to the parity of the number of Si atoms.

4 Conclusion

We have presented electronic properties of TM-atom-
doped Si cage clusters. Based on calculated chemical
potentials and hardnesses of some clusters we have shown

a first-approximation picture of the potential ability for
the clusters to become sources of charges, especially the
agents for charge-transfer-type doping.

This work has been partly supported by NEDO.
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